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Summary (50 words): 

Charcoal peaks in lake sediments provide valuable records of fire history in stand-

replacing fire regimes. Despite increasing use of this proxy, data analysis methods vary 

and have not been systematically compared. We demonstrate important biases between 

methods and make recommendations based on analyses of simulated and empirical 

datasets.  

 

Abstract 

Over the past several decades high-resolution sediment-charcoal records have 

been increasingly used to reconstruct local fire history. Data analysis methods usually 

involve a decomposition that detrends a charcoal series and then applies a threshold value 

to isolate individual peaks which are interpreted as fire episodes. Despite the proliferation 

of these studies, methods have evolved largely in the absence of a thorough statistical 

framework. We describe eight alternative decomposition models (four detrending 

methods used with two threshold-determination methods) and evaluate their sensitivity to 

a set of known parameters integrated into simulated charcoal records. Results indicate 

that the combination of a globally-defined threshold with specific detrending methods 

can produce strongly biased results, depending on whether or not variance in a charcoal 

record is stationary through time. These biases are largely eliminated by using a locally-

defined threshold, which adapts to changes in variability throughout a charcoal record. 

Applying the alternative decomposition methods on three previously-published charcoal 

records largely supports our conclusions from simulated records. We also present a 

minimum-count test for empirical records, which reduces the likelihood of false positives 
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when charcoal counts are low. We conclude by discussing how to evaluate when peak 

detection methods are warranted with a given sediment record. 

 

Introduction 

High-resolution charcoal records are an increasingly common source of fire-

history information, particularly in ecosystems where tree-ring records are short relative 

to average fire-return intervals (Gavin et al. 2007). Over the past several decades 

numerous studies have used peaks in charcoal accumulation in sediment records to 

estimate the timing of “fire episodes”, one or more fires within the sampling resolution of 

the sediment record (Whitlock and Larsen 2001). Identifying fire episodes from charcoal 

records is most promising when fires are (1) large, (2) burn with high severity, and (3) 

recur with average intervals at least five times the sampling resolution of the sediment 

record (Clark 1988b, Whitlock and Larsen 2001, Higuera et al. 2005, Higuera et al. 

2007). Sediment-charcoal records are thus particularly valuable for studying stand-

replacing fire regimes in boreal and subalpine forests, where all three of these conditions 

are typically met.  

Interpreting fire episodes from sediment-charcoal records would be 

straightforward if they were characterized by low levels of charcoal punctuated by 

unambiguous peaks. In reality, however, charcoal records are complex and non-

stationary, i.e., their mean and/or variance change over time (Clark et al. 1996, Clark and 

Patterson 1997, Long et al. 1998). Empirical and theoretical studies (e.g., Marlon et al. 

2006, Higuera et al. 2007) suggest that non-stationarity in charcoal records can arise from 

at least two sets of processes: (1) changes in the fire regime including the rate of burning, 
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the intensity of fires, the type of vegetation burned, and thus charcoal production per unit 

time, and/or (2) changes in the efficiency of charcoal delivery to the lake center 

(taphonomy) due to changing rates of slope wash and/or within-lake redeposition. The 

latter process, known as sediment focusing, can greatly affect the sediment accumulation 

rate as a lake infills (Davis et al. 1984, Giesecke and Fontana 2009) and may produce 

long-term trends in charcoal records unrelated to changes in the fire regime. Recognizing 

the importance of these processes, paleoecologists have applied a range of statistical 

methods to charcoal data in order to isolate the signal related to “local” fire occurrence 

(e.g., within 0.5-1.0 km; Gavin et al. 2003, Lynch et al. 2004a, Higuera et al. 2007) and 

reconstruct fire history. Despite the proliferation of statistical methods for peak 

identification, seemingly no study has discussed the assumptions underlying alternative 

methods and their impacts on fire-history interpretations.  

Here we address several key issues related to peak identification in high-

resolution, macroscopic charcoal records1 by using simulated and empirical charcoal 

records. We start by discussing some important statistical properties of macroscopic 

charcoal records and then describe the motivation for statistical treatments. We briefly 

review how different methods have been applied, and then introduce a typology of 

methods, including their respective assumptions and justifications. Second, we illustrate 

and quantify the biases that these techniques can introduce to fire-history interpretations 

by applying them to simulated charcoal records. Third, we apply the same methods to 

three previously-published charcoal records from conifer forests to demonstrate potential 

 
1 We refer to macroscopic charcoal records as those quantifying charcoal not passing through a sieve 

of 125 μm or larger.  
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biases in empirical records, and we introduce a technique to minimize some of these 

biases. Finally, we conclude with recommendations of specific methodologies and a 

discussion of how analysts can evaluate the suitability of records for peak identification 

rather than other qualitative or quantitative analyses. 

Temporal variability in charcoal time series 

Charcoal time series can be generally characterized as “noisy”, and they contain 

many forms of non-stationarity, including changing short-term variability superimposed 

on a slowly varying mean (Long et al. 1998, Higuera et al. 2007). Changes in variability, 

or heteroscedasticity, have implications for the particular goal of data analysis. When the 

goal is to quantify changes in total charcoal input, as an index of biomass burning for 

example, heteroscedasticity violates the assumptions of parametric statistics useful in this 

context, e.g., analysis of variance and regression. In particular, in analysis of variance (or 

in the t-test of the difference of means in the case of two periods) heteroscedasticity 

increases the probability of Type I error, falsely inferring significant differences between 

periods (Underwood 1997). Similarly, in regression analysis fitting a trend line to 

charcoal data with changing variability over time can increase the variability of the slope 

coefficient. Changes in variability (besides being interesting in their own right) can thus 

lead to false conclusions about the significance of long-term trends or differences 

between different parts of a record. In practice, heteroscedasticity is usually dealt with by 

applying a “variance-stabilizing transformation” (Emerson 1983) that acts to homogenize 

variance across a record. As will be illustrated below, when the goal of charcoal analysis 

is peak identification, transformation can lead to the exaggeration of some peaks and 
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suppression of others. Consequently, the specific approach taken (whether to transform or 

not), should depend upon the overall focus of an analysis. In this paper we focus on the 

goal of detecting local fires through peak detection.  

 

Analytical methods for inferring local fire occurrence 

Following Clark’s pioneering work (1988b, 1990) in which fire events 

surrounding small lakes were identified from charcoal in thin-sections of laminated 

sediments, similar approaches were developed for quantifying macroscopic charcoal 

abundance and subsequently adopted by a large number of research groups (Table 1; See 

also Whitlock and Larsen 2001). Most techniques quantify charcoal as either the total 

number of pieces or surface area (mm2) of charcoal in a particular size class, within 

volumetric subsamples taken contiguously through sediment cores (typically at 0.5 to 1.0 

cm resolution, corresponding to ca. 10-25 year resolution for most lakes). The resulting 

concentration of charcoal (pieces cm-3, or mm-2 cm-3) in each level is multiplied by the 

estimated sediment accumulation rate (cm yr-1) to obtain the charcoal accumulation rate 

(CHAR, pieces cm-2 yr-1 or mm-2 cm-2 yr-1). Sediment accumulation rates, and the age of 

each sample, are estimated by an age-depth model based on radiometric dates, tephra 

layers, and any additional sources of age information. The use of accumulation rates can 

potentially correct for changing sediment accumulation rates that would dilute or 

concentrate charcoal in a given volume of sediment, and as mentioned above, may also 

be affected by sediment focusing processes. Usually, the CHAR series is interpolated to a 

constant temporal resolution to account for unequal sampling intervals resulting from 

variable sediment accumulation rates. This step is necessary to develop threshold 
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statistics that are not biased to a particular portion of a record, and to standardized within- 

and between-site comparisons.2 Hereafter we refer to the interpolated CHAR series as C. 

The analytical choices and sources of error in the development of a charcoal record are 

briefly summarized in Table 2 and discussed in detail by Whitlock and Larsen (2001). 

At this point, most C series can be characterized as an irregular time series with 

discrete peaks superimposed on a slowly varying mean. While the size of any individual 

peak reflects the size, location, and charcoal production of individual fires, the average 

size of peaks may change through time, contributing to a slowly changing variance. This 

non-stationarity may arise, as discussed above, due to variations in charcoal production 

per unit time and/or variable taphonomic and sedimentation processes. Without 

knowledge of whether non-stationarity is due to changes in taphonomy and sedimentation 

or to real changes in fire history, it is reasonable to stabilize the variance of peak heights 

so as to not “pass over” periods of low charcoal. This motivates the manipulation of C to 

produce a stationary series in which all local fires would theoretically result in similar 

range of peak sizes. Doing so would allow for the application of a single global threshold 

value to the final series to separate fire-related from non-fire related peaks.  

In practice, determining the size of peaks that represents local fires involves a 

three-step “decomposition” of the C series (Clark et al. 1996, Long et al. 1998; Fig. 1). 

First, the slowly-varying mean, or “background” component, Cback, is modeled through a 

curve-fitting algorithm, e.g., a locally-weighted regression that is robust to outliers  (e.g., 

Cleveland 1979). The window size for this smoothing varies between studies but is 

 
2 When sampling intervals are not standardized within a record or between two 

records, then biases may be introduced when applying criteria uniformly. Interpolation 
helps minimize, but not remove, this bias, as noted in the last section of this paper.  
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typically between 100 and 1000 years. Background estimation may be preceded by 

transforming C (e.g., logarithmically). Second, the background trend is removed from the 

series by subtraction (C-Cback) or division (C/ Cback), creating a series of residuals or 

indices, respectively. This detrended series is frequently termed the “peak component,” 

but in the case of indices, it is dimensionless rather than a portion of C, as implied by 

“peak component.” Here we use the term “peak series” and notation Cpeak to refer to the 

detrended series. Third, a threshold is applied to Cpeak to separate variability related to 

local fire occurrence from variability unrelated to local fire occurrence (e.g., random 

variability and sediment mixing). Peaks exceeding the threshold are the basis for fire 

frequency and fire return interval calculations. 

Here, we present a typology of four possible decomposition approaches based on 

whether the raw or transformed C series is used and whether Cpeak is calculated as 

residuals or index values relative to Cback (See Table 3 for abbreviations). The no-

transform-residual model (NR model hereafter) is a simple subtraction: C – Cback. The 

no-transform-index model (NI model) is a ratio: C / Cback. Because background charcoal 

is in the denominator, the NI model cannot be applied when background charcoal equals 

zero, which occurs in non-forested or treeline ecosystems (e.g., Huber et al. 2004, 

Higuera et al. 2009, Hallett and Anderson 2010). The transform-residual model (TR 

model) first log-transforms C (after adding 1 to guard against negative values) before 

calculating the background: log(C+1) – Cback, where Cback  = f (log(C+1)) . Finally, the 

transform-index model (TI model) is the ratio of the log-transformed series: log(C+1) / 

Cback, where Cback  = f (log(C+1)).  
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Nearly all studies have used the NR or the TI model in charcoal peak analyses 

(Table 1), but there has been no discussion of the assumptions underlying each model. 

The NR model implicitly assumes that charcoal peaks from local fires are created through 

additive processes. That is, charcoal introduced from a fire is added to the total amount of 

background charcoal (i.e., charcoal delivery to the core site during periods without local 

fires). Background charcoal may change as redeposition processes change (e.g., wind-

mixing of littoral sediment, higher fire frequencies), but the total amount of charcoal 

produced per fire remains unchanged. Variance stabilization is the goal of the NI, TR, 

and TI models, which implicitly assume that charcoal peaks from local fires are created 

through multiplicative processes; i.e., the total amount of charcoal introduced from a 

local fire is some multiple of background charcoal. Similar variance-stabilization goals 

used in dendrochronology are typically based on the NI or TR models, rather than the 

methods more recently adopted for charcoal records (NR and TI models; Table 1). As in 

dendrochronology (Cook and Peters 1997, Fowler 2009) the choice of detrending model 

has an important impact on the resulting detrended series. 

In comparison with the little attention given to alternative detrending models, 

recent papers have more carefully addressed the task of determining threshold values for 

peak identification. Comparison of peaks with known fire events (dated from historical 

records or tree-rings) may help in selecting a threshold, but historical records often 

represents only a fraction of a charcoal record, and a wide range of thresholds may still 

be appropriate (e.g., Gavin et al. 2006). Clark et al. (1996) addressed this issue by using a 

sensitivity analysis to test of the number of peaks as a function of changing threshold 

values. They reasoned that if Cpeak was comprised of a population of small values (e.g., 
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background charcoal) and a smaller population of large values (local fires), then the 

sensitivity test should detect the split between these populations. Gavin et al. (2006) built 

on this sensitivity test by modeling Cpeak as a mixture of two Gaussian distributions with 

different means, variances, and proportional contribution to the total population. The 

lower distribution is assumed to represent the majority of time during which C is small 

and is affected mainly by distant fires, redeposition, mixing, and random variability; i.e., 

the “noise” unrelated to specific fires. The upper distribution, ideally distinct from the 

lower distribution, describes the variability due to local fires and can be considered the 

“signal” of interest. Gavin et al. (2006) suggested that the threshold be at the upper end of 

the noise distribution, and Higuera et al. (2008) further specified that the threshold be at 

the 95th, 99th, or 99.9th percentile of the noise distribution. If the noise and signal 

distributions are distinct, then the variance of the signal distribution (σ2
S) would be much 

larger than that of the noise distribution (σ2
N). A signal-to-noise index (SNI; Higuera et 

al. 2009), calculated as σ2
S/(σ2

S+σ2
N) approaches one when the noise distribution is 

tightly defined with a narrow standard deviation. SNI values less than ≈ 0.5 suggest poor 

separation of large peaks from the noise-attributable variation. We note these details here 

because the Gaussian mixture approach assumes that the distribution of Cpeak values is 

right-skewed, and therefore variance-stabilizing expressions of Cpeak (all but the NR 

model) work against defining a distinct noise distribution.  

Unless variance of Cpeak does not change through time (i.e., it is homoscedastic), 

selecting a threshold based on the entire series could lead to systematic biases towards 

detecting small or large peaks (depending on which size dominates the record). While 

variance-stabilization approaches were developed to address this issue, Higuera et al. 
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(2008a, 2009) introduced a new approach intended to be more adaptable by applying the 

Gaussian mixture model introduced by Gavin et al. (2006) to a 500-year moving window 

of Cpeak centered on each time step in the series. This technique is termed a “local 

threshold,” and it accounts for potentially changing variance of Cpeak by selecting a 

threshold based on σ2
N in a user-defined subsection of the record. Using smaller sample 

sizes to compute the Gaussian mixture distribution increases the chance of erratic model 

fits in a portion of the cases. Thus, it is important to smooth the local thresholds (typically 

to the same frequency as that use to define Cback) such that it varies smoothly over time 

and  be cognizant of the total number of samples in each local population (a minimum of 

ca. 30 is recommended; Higuera et al. 2009). This decomposition approach is similar to 

peak-detection methods in other applications (e.g., Mudelsee 2006) in that it accounts for 

changes in both the central tendency and variability in a series. 

Last, Gavin et al. (2006) introduced a test to screen peaks detected by a threshold 

but may nevertheless result from statistically-insignificant changes in charcoal 

abundance. This “minimum-count test” applies specifically to studies quantifying 

charcoal through numbers, as opposed to area, and it examines the possibility that the 

differences in counts between two samples may result simply from sampling effects. If 

charcoal count and volume data are available, then it is possible to assess the minimum 

increase in charcoal count required to be statistically greater than a previous sample, 

assuming measured counts are Poisson-distributed around the “true” (unknown) count for 

a given sample volume. The probability that two sample counts, X1 and X2, from 

sediment volumes, V1 and V2, may originate from the same Poisson distribution is 

estimated from the d statistic: 



  

d =

X1 − ( X1 + X2 )
V1

V1 +V2
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where the significance of d is assessed from the cumulative normal distribution (Detre 

and White 1970, Shiue and Bain 1982). This test does not incorporate additional errors in 

counts from laboratory error (Table 2), and so significance thresholds higher than 0.05 

may be warranted. We incorporate the minimum-count test here because the possibility 

of sampling-related errors increases with the variance-stabilization models (NI, TR, TI) 

due to the inflation of very small changes in C at times when Cback is small (Cook and 

Peters 1997). 

Methods 

To illustrate how analytical choices impact peak identification, we applied the 

methods introduced above to simulated and empirical charcoal records. With simulated 

records, where the underlying processes creating a charcoal record are known, we 

evaluated the sensitivity of each of the four decomposition and the two threshold-

determination methods (global and local thresholds) to two hypothetical scenarios 

(described below). We analyzed the empirical records in the same manner but also 

applied the minimum-count test to illustrate the impacts of this technique.  

 

Simulated Records 

 12 

Simulated charcoal records were generated from statistical distributions to reflect 

two scenarios for the relationship between C and  Cback. In both scenarios, the rate of peak 
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occurrence (implicitly representing local fires) was constant, but Cback increased half-way 

through the 10,000-yr record. In Scenario 1, charcoal peak heights had a constant 

variance that was independent of Cback, representing the assumption that charcoal from 

local fires is added to a charcoal record through additive processes; thus variability is 

stationary throughout the record. In Scenario 2, peak heights varied in direct proportion 

to Cback, representing a multiplicative relationships between charcoal from local fires and 

Cback; thus the charcoal series is heteroscedastic.  

Simulated records with 20-yr time steps, x(i), i = 0, 20, 40…10,000, were 

constructed in three steps, and we use the notation Cb and Cp to refer to the known 

populations of background and peak charcoal respectively, where as the estimated 

populations are referred to with Cback and Cpeak, as introduced above. First, background 

charcoal, Cb, was prescribed as constant values that increased from a minimum of 50 to a 

maximum of 100 pieces per 5 cm-3  between 5500 and 4500 simulated yr BP. 

Specifically, the concentration of background charcoal in any 20-yr sample, x(i), was 

defined as: 

  
Cb(i) =

min(Cb ) + max(Cb )
1+ exp[−lrx(i)]

 
(2) 

where l = 45 and r = 0.009 and determine the location (in time) and rate of change in Cb, 

respectively. Second, a charcoal series characterized by right-skewed high-frequency 

variation, Cp (pieces 5 cm-3) was calculated from random numbers using a power 

function, as follows: 

16 

17 

18 

19 

  
Cp (i) = b[− logε(i)]c  (3) 
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where b = 35 and determines the location of the distribution, c = 1.25 and creates a 

distribution slightly more skewed than a log-normal distribution (as found in many 

empirical records; Marlon et al. 2009), and ε(i) ≈ N(0; 1), a random number from a 

normal distribution with mean 0 and standard deviation 1. Third, the background and 

peak series (pieces cm-3) were added, and then multiplied by the sediment accumulation 

rate, sacc (cm yr-1), to obtain the final series of charcoal accumulation rates (CHAR, 

pieces cm-2 yr-1), C. For Scenario 1, no further treatment was performed, and: 

( ) [ ( ) ( )]acc b pC i s C i C i= +  (4) 

8 

9 

 

For Scenario 2, the C was scaled to background charcoal, Cb, as follows: 

  
C(i) = sacc

Cb(i)
max(Cb )

Cb(i) + Cp (i)
⎡

⎣
⎢

⎤

⎦
⎥  

(5) 
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 As a result, peak heights in Scenario 2 increased proportional to Cb, and the structure of 

the variance changed through the time series.  

  

Empirical Records 

We selected three high-resolution charcoal records with differing variability in 

background charcoal and peak heights. Little Lake (Long et al. 1998) is located in 

Douglas-fir forest in the Oregon Coast Range. The 3.3-ha, 4.0-m deep lake is surrounded 

by a fen and has a small inflowing stream draining a 597-ha watershed (Marlon et al. 

2006; C. Long, personal communication, November 2009). The 11.3-meter core has 

overall C values similar to the simulated records (median = 14.4 pieces cm-2 yr-1). Over 
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its 9000-yr record Cback varies between 0.94 and 44.04 pieces cm-2 yr-1, and vegetation 

was consistently dominated by Douglas-fir. Rockslide Lake (Gavin et al. 2006) is located 

in subalpine forest in southeast British Columbia. The 3.2-ha, 14.1-m deep lake is fed by 

an intermittent stream within an 86-ha watershed. The 2.1-m core has overall C values 

lower than Little Lake (median = 0.49 pieces cm-2 yr-1). Over its 5000-year record Cback 

varies between 0.06 and 1.13 pieces cm-2 yr-1, and vegetation was consistently dominated 

by Engelmann spruce and subalpine fir. Finally, Ruppert Lake (Higuera et al. 2009) is 

located in boreal forest of Alaska’s south-central Brooks Range. The 3-ha, 7.0-m deep 

lake has a ca. 200-ha watershed with subdued topography and a small inflowing stream. 

The 4.8-m core has the lowest overall C values of all three records (median = 0.04 pieces 

cm-2 yr-1). Over the 14,000-year record Cback ranges from 0.00-0.22 pieces cm-2 yr-1 with a 

distinct increase around 5000 yr, coincident with the transition from a forest-tundra to 

boreal forest vegetation. Overall, five different vegetation types dominated the landscape 

around Ruppert Lake during the record.  

For all records, we used the published age-depth relationship but reanalyzed each 

series using the published resampling intervals of 10, 10, and 15 yr for Little, Rockslide, 

and Ruppert lakes, respectively. We did not use the same analysis parameters as in the 

published records, since our purpose was to test different parameters. We calculated 

background charcoal using a locally weighted regression robust to outliers (lowess) in a 

500-year window. The robust lowess model is less sensitive to non-stationarity and thus 

may be applied to raw and transformed data (Cleveland 1979). 

 

Data transformation, peak identification, and sensitivity analysis 23 
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We applied the four different detrending models to each simulated and empirical 

record, and we used a modified Levene’s test of equal variance (based on sample 

medians; Brown and Forsythe 1974) to test the null hypothesis of equal variance between 

two portions of each record. Sample sizes for p-value calculations were adjusted to 

account for temporal autocorrelation in each record following Bretherton et al. (1999). 

For simulated records, we compared the periods 10,000-6000 and 4000-0 yr BP. We 

present only the median test result for 500 realizations of the simulated series.3 For 

empirical records we subjectively selected periods where background charcoal had two 

qualitatively different levels and then divided this period in half for comparison. At 

Little, Rockslide, and Ruppert lakes, these periods corresponded to the last 8000, 5000, 

and 10,000 years, respectively. The test statistic, W50, is used as an index of 

heteroscedasticity, and the associated p-value is used to assess the null hypothesis of 

equal variance.  

We identified peaks in simulated and empirical records using a Gaussian mixture 

model that models the noise distribution within Cpeak (described earlier). In this 

application, the value of the mixture model is its ability to apply uniform treatments to all 

records, making specific threshold-selection parameters of less importance. For all 

analyses, we used the 99th percentile of the modeled noise distribution as the threshold 

 
3 Results did not differ when analyzing 250, 500, or 1000 realizations (each 10,000 yr 

long), suggesting that the inherent variability captured.  



 17 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

                                                

value.4 Thresholds were defined both globally (a single mixture model fit to the entire 

record) or locally (fitting the mixture models to 500-year windows centered on each 

sample, and then smoothing the series of resulting threshold values). 

For the simulated records, we quantified the sensitivity of peak identification to 

the four detrending models with a sensitivity ratio, s. We defined s as the number of 

peaks detected in the first half of each record divided by the total number of peaks 

detected in the second half of each record. If an analytical method is insensitive to 

variations in Cback, then s will equal one. Values of s significantly greater or less than one 

indicate a systematic bias in the set of analytical methods. We used a Monte Carlo 

approach to estimate the value of s for each of the 16 analysis combinations (2 simulation 

scenarios x 4 detrending models x 2 threshold-determination techniques = 16). For each 

combination, s was estimated by the average s from 500 simulations, and the 2.5th and 

97.5th percentiles were used to estimate 95% confidence intervals around s. If the 95% 

confidence intervals overlapped one, then the ratio was considered no different from one 

and the method was deemed insensitive to the variation in background charcoal.  

We performed two additional analyses on the empirical records. First, we 

explored the effect of the four detrending models on the capacity of the Gaussian mixture 

model to identify a distinct noise distribution. For simplicity, we chose to use only a 

globally-fit model applied to the Rockslide Lake record, the least variable record; similar 

examples could be based on subsections of other records. As a metric of how distinct 

peaks were from Cback, we examined the SNI (defined earlier) of the fitted Gaussian 

 
4 Note that the exact threshold criterion used here has no consequence on our 
interpretations, because interpretations are based on relative changes across a record. For 
example, analysis using the 95th percentile produced identical patterns. 
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mixture model. Second, to illustrate the impact of the eight alternative decomposition 

methods and the minimum-counts test, we applied each method to the empirical records. 

We quantified the percent of peaks that fail to pass the minimum count test under each 

decomposition method, and to illustrate how interpretations may differ, we summarized 

peaks (after removing those failing to pass the minimum-count test) with 1000-yr 

smoothed peak frequency curves (peaks 1000-yr-1, smoothed to 1000 yr with a lowess 

filter).  

 

Results 

Simulated Records 

As designed, simulated charcoal records from Scenario 1 were homoscedastic 

(500-sample median W50 = 0.45, median p = 0.502), while records from Scenario 2 were 

heteroscedastic (W50 = 21.87, p < 0.001; Table 4, Fig. 2). For both scenarios, the choice 

of decomposition method had a major effect on the variability in the resulting peak series, 

Cpeak (Table 4, Fig. 2). Under Scenario 1, only the NR model resulted in a stationary 

series (W50 = 0.44, p = 0.508; Fig. 2; Table 4). The TR and NI models greatly inflated 

variance when background charcoal was low (W50 = 46.72, 25.62; p < 0.001), and the TI 

model further inflated variance (W50 = 98.54; p < 0.001). No model stabilized variance in 

records from Scenario 2 (Table 4, Fig. 2). The NR model preserved heteroscedasticity in 

the original record (W50 = 21.81), the TR and NI models reduced heteroscedasticity (W50 

= 7.12, 10.81), while the TI model increased heteroscedasticity (W50 = 57.92). The 

skewness of Cpeak also varied greatly among models. For both Scenario 1 and Scenario 2, 

the NI model produced the most skewed peak series (3.47 and 3.03), followed closely by 
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the NR model (2.59, 2.97), and the TI (1.21, 1.55) and TR (0.95, 1.20) models (Table 4, 

Fig. 2).  

 In simulated records, threshold type was more important than detrending model 

when evaluating the sensitivity of peak identification to changes in variance (Fig. 3). 

Locally-defined thresholds were insensitive to the presence of heteroscedasticity 

(Scenario 2 vs. Scenario 1) and detrending model (s for all scenarios did not differ from 

1). In contrast, using a globally-defined threshold produced unbiased results only under 

three conditions. When C was characterized by constant variance (Scenario 1), a 

globally-defined threshold was unbiased when Cpeak was defined by residuals: median s 

for NR and TR models was 1.00 (95% CI 0.76-1.33) and 1.17 (0.92-1.54), respectively. 

Using an index to define Cpeak inflated variance when Cback was low (Fig. 2), resulting in 

1.86-2.55 times the number of detected peaks: s for NI and TI models was 1.86 (1.24-

3.00) and 2.55 (1.50-4.56), respectively. When variance in C increased with Cback 

(Scenario 2), transforming C and using residuals produced unbiased results, as did 

creating an index from the non-transformed series: s for TR and NI models was 0.85 

(0.63-1.10) and 1.33 (0.98-1.79), respectively. Defining Cpeak as the residuals of non-

transformed C (NR model) resulted in more peaks detected when Cback and variability 

was high (s = 0.63 [0.43-0.87]), and transforming and using an index to define Cpeak (TI 

model) resulted in nearly twice as many peaks detected when Cback and variability were 

low (s = 1.70 [1.15-2.63]). 

 Overall, analyses of simulated records illustrate the sensitivity of decomposition 

methods to changes in the mean (Scenario 1) and changes in the mean and variance 

(Scenario 2) of a series through time. Although simplified, the sensitivity of the simulated 
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records to the analytical method highlights biases that can arise from similar changes in 

empirical records, even when of smaller magnitude and/or duration.  

 

Empirical Records 

 The three empirical records differed greatly in their long-term variability in C (Fig 

4). Little Lake had relatively low charcoal values until ca. 4000 yr BP when sediment 

accumulation rate increased five-fold (0.07 to 0.35 cm yr-1) in parallel with C. At 

Rockslide Lake, sediment accumulation rates varied about two-fold (0.04 to 0.08 yr-1) 

and were largely independent of C. At Ruppert Lake, sediment accumulation rates varied 

nearly five-fold (0.018 to 0.181 cm yr-1) and while C followed the sediment accumulation 

rate during the first few millennia, these variables were unrelated for the majority of the 

record. 

The raw records (C) at each site exhibited significant heteroscedasticity (Table 4), 

with Little Lake exhibiting the most, followed by Ruppert and Rockslide lakes (W50 = 

153.14, 84.62, 15.20, respectively; p < 0.001). The four detrending models had a large 

effect on the variance in Cpeak (Table 4; Fig. 4). The TR and NI models were most 

effective at stabilizing variance, although results differed between sites. At Rockslide 

Lake the TR model stabilized variance (500-2500 vs. 2500-0 yr BP, W50 = 0.49, p = 

0.483); this model performed second best at Little Lake (800-4000 vs. 4000-0 yr BP, W50 

= 3.40, p = 0.066) and performed worst at Ruppert Lake (10,000-5000 vs. 5000-0 yr BP, 

W50 = 66.52, p < 0.001). At Little Lake, the NI model stabilized variance (W50 = 0.01, p = 

0.942), and at Ruppert Lake no model stabilized variance. Although the NR and TI 

models reduced heteroscedasticity, they did not stabilize variance in any record. 
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Skewness in Cpeak was largest when using the NR model (Little Lake, 17.73) or NI model 

(Rockslide and Ruppert lakes, 5.28, 6.79, respectively). In contrast, log-transforming C 

(TR and TI models) reduced skewness, and at Little Lake these models resulted in near-

symmetric distributions (0.28 and -0.56, respectively; Table 4). 

The noise distribution fit by the Gaussian mixture model resulted in different 

signal-to-noise (SNI) and skewness values, dependent on the decomposition model (Fig. 

5). As applied to the Rockslide Lake record, the NR and NI models yielded the largest 

signal-to-noise index (SNI; 0.97 and 0.98), whereas the TR and TI models had the 

smallest SNI (0.81 and 0.94). Skewness, as a potential measure of the occurrence of high 

values distinct from a noise distribution, was highest for the NI model (5.28). The TR 

model, though having a moderate SNI, was the most symmetric (skewness = 1.68).  

As with simulated records, peak detection in empirical records was more sensitive 

to alternative decomposition models when using a global vs. local threshold, and this 

sensitivity varied greatly between sites (Fig. 6). At Little Lake, where Cback varied the 

most throughout the record, a global threshold detected 41 peaks with the NR model but 

only 5 with the TI model, producing drastically different trends in 1000-yr mean fire 

frequency. The TR and NI models produced an intermediate number of peaks (23 and 30) 

with qualitatively similar trends over time. In contrast to Little Lake, peak detection with 

any model varied by 6% at Rockslide Lake (33-35) and 13% at Ruppert Lake (64-72), 

where variability in Cback was less. At all sites, locally-defined thresholds detected more 

peaks and with less variability between models than with globally-defined thresholds, 

even after minimum-count screening (described below). Again, differences among 

models were greatest at Little Lake, where peak detection varied from 56-68 (21%). Peak 
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detection varied little at Rockslide Lake, 34-36 (6%), and slightly more at Ruppert Lake, 

79-88 (11%). Differences at Little and Ruppert lakes largely reflect differences between 

the two residual models (NR and TR) in comparison to the index models (NI and TI).  

The minimum-count screening flagged between 0-14% of the total peaks detected 

in any one record, with the least at Little Lake (median = 2.5%), followed by Rockslide 

Lake (median = 9%) and Ruppert Lake (median = 11%). A greater proportion of the total 

peaks detected was flagged when using a local vs. global threshold (median = 9% vs. 

3%), and the variability between detrending models differed by threshold type. When 

using a global threshold, a larger percentage of total peaks were flagged when using 

index models (median for NI and TI = 11%) vs. residual models (median for NR and TR 

= 3%). This difference was reduced using a local threshold (10% vs. 9%, respectively).  

 

Discussion 

 Interpreting local fire history from sediment charcoal records involves a number 

of analytical steps that decompose multiple signals into a series of peaks that bears 

interpretation (Fig. 1). Accounting for non-stationarity in a record is a primary goal of 

decomposition methods, and our analyses of simulated records illustrate the sensitivity of 

alternative methods to two types of non-stationarity: a change in the mean (Scenario 1), 

and a change in the mean and variance (Scenario 2) through time. In combination with 

empirical records, our results highlight some critical methodological considerations that 

have been broadly overlooked in the literature. Specifically, we emphasize the need for 

careful consideration when proceeding through steps 4-6 of a decomposition method 

(Fig. 1): (a) defining Cpeak, or detrending, (b) defining a threshold to detect peaks, and, in 
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the case of charcoal counts, (c) screening and removing peaks that could result from 

insignificant changes in charcoal counts.  

 

Detrending to define a peak series 

An overriding conclusion from our study is that the impacts of different 

detrending models are largely obviated by using a locally-defined threshold. In simulated 

records, peak identification using a local threshold was robust to changes in background 

charcoal, peak variance, and detrending model (Fig. 3). In empirical records, these 

patterns largely held true, as reflected by less between-model variability when using local 

vs. global thresholds. For example, the total number of peaks detected since 5000 yr BP 

in Ruppert Lake varied by 7% vs. 30% when applying a local vs. global threshold to the 

different detrending models (Fig. 6). Locally-defined thresholds outperformed global 

thresholds because the mixture model used to determine thresholds constantly adapts to 

variability in a record. Consequently, local thresholds are free from the assumption of 

stable variance in peak heights, at least for time scales longer than the window width used 

to define “local.” With no need to stabilize variance across a record, detrending before 

applying a locally-defined threshold needs only to account for changes in the long-term 

mean, and thus three of the four detrending models evaluated become obsolete. Even 

stabilizing the mean, interestingly, may be unnecessary when using a locally-defined 

threshold, but no studies have attempted this to date. Our results are consistent with 

analyses done by Ali et al. (2009b), who applied the local threshold technique to three 

different charcoal quantification metrics from individual cores (counts, area, and 

estimated volume). Although the variability between the three metrics differed, the 
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locally-applied threshold produced similar results in each case. Overall, these findings 

lend support to the recent adoption of local thresholds for peak-identification (Table 1) as 

robust to changes in variance both within and between records. 

Although local thresholds effectively eliminate the need to stabilize variance, 

understanding the impacts of detrending models when combined with global threshold 

remains important, mainly due to the prior use of these approaches (Table 1). Our results 

suggest that reanalysis of some previously-published records is justified, as has been 

initiated in some larger-scale synthesis studies (Marlon et al. 2009). In particular, 

analyses using a global threshold and the NR model with clearly heteroscedastic records 

or a global threshold with the TI model should be reconsidered, given the potential for 

systematically biased peak detection during periods of high or low Cback.  

When applying a global threshold, it is imperative to evaluate the presence or 

absence of heteroscedasticity in a record before selecting a detrending model. If a record 

has stable variance, then the NR model is the single appropriate model because it only 

removes the mean trend of a series (Fig. 2). In simulated records, the only instance in 

which the global threshold was unbiased was when the NR model was applied to 

homoscedastic records (Scenario 1; Fig. 3). The closest analogy in the empirical records 

is from Rockslide Lake, which had the least heteroscedasticity of the three records 

evaluated (and was the shortest in length) and consequently was most robust to 

alternative detrending methods. Applying variance-stabilizing models (TR, NI, TI) to 

homoscedastic records is not only unwarranted, but it can result in severely biased peak 

identification (Fig. 3) by simultaneously amplifying and suppressing peaks during 

periods of low and high background charcoal, respectively (Fig. 2). This bias was 
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minimized when using the TR model, and it subsequently increased with the NI and TI 

models. By amplifying peak sizes when Cback is low, index-based models applied to 

homoscedastic records result in biased peak identification (Fig. 2, 6). This bias is most 

extreme when using the TI model in combination with a global threshold, as this led to 

more than twice as many peaks being detected during periods of low vs. high background 

charcoal in our simulations (Fig. 3).  

Unfortunately, most empirical charcoal records exhibit heteroscedasticity at some 

time scale, particularly those spanning different biomes and/or many millennia. This 

limits the utility of the NR model with a global threshold. All the empirical records in this 

study, for example, had non-stable variance between the two periods of comparison 

(Table 4; Fig. 4). In heteroscedastic records, both empirical and simulated records 

support the TR or NI models as most appropriate for consideration when using a global 

threshold. Although no model stabilized variance in the simulated records with 

heteroscedasticity, the TR and NI performed the best, and in empirical records these 

models stabilized variance across comparison periods in some records (Table 4). When 

applied to heteroscedastic records, the NR and TI models are inappropriate for the 

opposite reasons. Simply detrending by residuals (NR) fails to remove any 

heteroscedasticity (Table 4), which biases peak identification towards periods of high 

Cback (Fig. 3). Detrending with an index of transformed data (TI) reverses the pattern of 

heteroscedasticity in what is essentially a “double whammy” of variance-stabilization 

(Fig. 2, 4), biasing peak identification towards periods of low Cback (Fig 3). The 

undesirable effects of the TI model are most apparent in the Little Lake record, where 

four of the five peaks detect occurred during the period of low background charcoal (Fig. 
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6). The overall low number of peaks detect in this scenario also stands out as odd, and it 

highlights the conceptual difficulty of interpreting fire history from a symmetric peak 

series. If the variability above Cback does not differ from the variability below Cback, then 

it is inconsistent to interpret the former as fire-related while interpreting the latter as 

noise-related. When a globally-defined Gussian mixture model is applied to a nearly 

symmetric peak series (e.g., Little Lake under the TI model, skewness = -0.56; Table 4), 

selecting a threshold at the 99th percentile cuts off 99% of the samples in the series (895 

of 900 samples in the Little Lake record; Fig. 6). 

Finally, we emphasize that the impacts of different detrending models will vary 

between sites, depending on the mean and variability of charcoal accumulation rates in a 

record. Rockslide Lake, for example, was largely robust to alternative decomposition 

methods, whereas Little Lake displayed large variability between methods (Fig. 7). 

Ruppert Lake was also clearly heteroscedastic, but overall lower C and Cback values as 

compared to Little Lake resulted in less sensitivity to alternative detrending models (Fig. 

6).  

 

Defining a threshold 

 The Gaussian mixture model introduced by Gavin et al. (2006) is promising 

because it provides a semi-objective, process-based means of selecting a threshold for 

peak identification which in turn can be applied to multiple records. Using the mixture 

model to identify a threshold depends upon three key assumptions: (1) variation in the 

noise distribution, representing variability around the long-term trend (i.e. Cback), is 

normally distributed; (2) the mean and variance of this noise distribution is stationary 
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within the period of analysis; and (3) there are enough samples within the period of 

analysis to adequately characterize the noise distribution. The first assumption has 

theoretical support from a charcoal simulation model (Fig. 3 in Higuera et. al. 2007), and 

it is consistent with the distributions of peak charcoal observed in empirical records (e.g. 

Higuera et al. 2009; Fig. 5). The mechanisms creating normally-distributed variability 

around the long-term trend include sediment mixing, inter-annual variability in long-

distant charcoal input, sampling effects, and analytical error. Other mechanisms may 

produce skewed variability, and to the extent that this is true, this is a limitation of the 

Gaussian mixture model (discussed below).  

The second assumption, that the properties of the noise distribution are stable, 

becomes increasingly difficult to satisfy as more samples are included in the population. 

The two ways to satisfy this assumption are to define the threshold over a period of stable 

mean and variance (i.e. use a locally-defined threshold), and/or define Cpeak with one of 

the two recommended variance-stabilizing methods (TR, NI). The shorter the period over 

which a threshold is defined, the more difficult it becomes to satisfy the third assumption, 

that the Gaussian distribution adequately describes the empirical data. Thus, the analyst 

has to make a trade-off between satisfying assumptions two and three. In practice, one 

can test the third assumption with a goodness-of-fit statistic, which quantifies the 

probability that the empirical data came from the modeled Gaussian distribution (e.g. 

Higuera et al. 2009). The modified Levene’s test used in this study can be used to test for 

equal variance between different periods in a peak series. Future application of this test 

could be done on shorter, overlapping intervals, although one faces reduced statistical 
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power as the intervals decrease, and interpreting p-values become difficult with multiple 

comparisons.  

 The application of the Gaussian mixture model to identify a threshold is also 

aided by maximizing the separation between the noise distribution and fire-related peaks. 

This is a key difference between the analytical approach taken for peak identification 

compared to the analysis of long-term trends in total charcoal (e.g., Marlon et al. 2008, 

Power et al. 2008, Marlon et al. 2009). Whereas homogenizing variance is desirable in 

the context of the latter, this decreases separation between noise and fire-related samples, 

i.e., it reduced the signal-to-noise index (SNI). For example, in the Rockslide Lake 

record, the SNI was highest (0.97-0.988) using the NR and NI models, whereas it was 

consistently lowered when applying variance-stabilizing transformations (0.81-0.94; Fig. 

5). Skewness may also serve as a coarse index of how separated peak values are from 

non-peak values. At Little Lake, a nearly symmetric peak distribution defined by the TI 

model reflected little to no separation between peak and non-peak values. Thus, as a 

general rule, a minimum level of skewness of around two would suggest a SNI sufficient 

to aid in setting thresholds, but increased skewness beyond two does not necessarily 

equate to an increased SNI. We also note that skewness alone is not justification for peak 

interpretation, particularly if it is an artifact of the detrending processes.  

 

Interpreting small charcoal peaks 

Most decomposition methods resulted in the identification of small peaks that 

failed to pass the minimum-count test at the 95% confidence level (0-14% of the total 

peaks identified; Fig. 6). Some peaks fail to past this test because they closely follow 
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other large peaks (i.e. a “double peak”), e.g., around 1200 yr BP at Ruppert Lake (Fig. 4 

and 6). These peaks most likely represent non-significant variations in charcoal counts 

due to natural and/or analytical variability. More challenging for sediment-based fire-

history reconstructions are periods of low charcoal abundance. In these cases, both 

variance-stabilizing and local-threshold methods may result in detecting small peaks, 

often associated with small charcoal counts in the raw record. The smaller the charcoal 

peak, the more difficult it is to infer if the peak was caused by a local fire vs. a distant fire 

and/or random variability in charcoal deposition and quantification. The minimum-count 

test helps guard against falsely inferring a peak was caused by a local fire (Type I error). 

When this probability is low, e.g. < 0.05, it is highly unlikely that the two samples come 

from the same population. Practically, Figure 7 illustrates the increase in counts (as a 

proportion and absolute number) required to achieve a given level of confidence (95 or 

99%) as a function of the number of charcoal pieces in the pre-peak sample. The lower 

the pre-peak count, the greater the proportional increase in charcoal required before a 

peak sample can be considered distinct with 95% confidence. For example, when pre-

peak counts are < 10, peak counts must double before having a < 5% chance of coming 

from the same populations. Much smaller proportional increases are required when 

overall counts are large, e.g., only a 20% increase is required when pre-peak sample are 

ca. 100. Thus, as a rough rule of thumb, it is highly desirable for researchers to use 

sample volumes that will result in average non-peak samples of > 10 pieces, and peak 

values of at least 20 pieces. 

Even with large sample volume, in some cases the difference between a peak and 

non-peak sample may be small. Interpreting variability when charcoal counts are low 
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highlights a limitation of the Gaussian mixture model briefly mentioned above. The 

mixture model assumes normally-distributed noise, and thus it may fail when counts are 

small, because the true noise distribution may be positively skewed (i.e., Poisson 

distributions with a mean < 10 are positively skewed). If so, the Gaussian mixture model 

would underestimate the threshold, resulting in an increased false-positive rate. Future 

efforts modeling noise distributions within Cpeak could address this limitation through the 

use of non-Gaussian mixture models, which may be more appropriate for the heavy-tailed 

distributions that characterize C and Cpeak series (Coles 2001). For example, the signal 

and  noise distributions may be better fit by models in the generalized extreme value 

family (e.g., Weibull, Fréchet, and Gumbel distributions), and the signal distribution may 

be fit more appropriately by models in the Generalized Pareto family (e.g. Pareto, beta, 

and exponential distributions; Katz et al. 2005). In the ideal case, the signal distribution 

has little influence on the parameters of the noise distributions, because the noise 

population typically dominates the mixed distribution. Nonetheless, improving the fit of 

the signal distribution would be an improvement over current methods and deserves 

exploration. In the mean time, we suggest that the minimum-count test serves well to 

screen out small peaks, be they detected with a threshold from Gaussian mixture model 

or otherwise.  

 

Recommendations and Conclusions  

Even when applying the most rigorous analytical techniques, there is no substitute 

for careful inspection of a record to assess whether it can provide an unbiased fire history 

in the first place. We highlight three key issues related to assessing the quality of 
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millennial-scale charcoal records when independent evidence supporting a particular 

reconstruction is lacking. First, records should be interpreted in the context of a null 

hypothesis of random variability. If a peak series lacks large values, is symmetric, or fails 

to detect recent fires, then the record should be considered too noisy for peak 

identification. The signal-to-noise index utilized here is intended to help evaluate this null 

hypothesis, and current work is improving the application of this metric for this purpose 

(Kelly et al., in preparation). Records with low SNI value(s) or symmetric peak series 

should either forgo peak identification methods, or be presented with a low, medium, and 

high ranges of possible thresholds. Depending on the cause of a low SNI, these records 

may still be appropriate and valuable for interpreting trends in biomass burning through 

interpretations of C and/or Cback. 

Second, if a record has large variability in sediment accumulation rates, 

practitioners must consider the possibility that changing peak frequencies result from 

changes in sample resolution. Resampling a record to the median or maximum deposition 

time per sample coarsens or falsely increases the resolution during periods of high or low 

sediment accumulation, and thus should create a more temporally unbiased time series. 

However, this resampling may not be a simple solution if sedimentation varies widely, 

because sediment mixing modifies the effect of changing sediment accumulation rate on 

the effective resolution of a sediment record. For example, mixing the top 2-cm of 

sediment during a period when the deposition time is 10 yr cm-1 would result in an 

effective 1-cm resolution of 20 years. In contrast, the same 2-cm mixing depth during a 

sediment accumulation rate of 20 yr cm-1 would result in an effective resolution of 40 

years. An important cause of changing sediment accumulation rate is fluctuating within-
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basin sediment focusing and sediment delivery by stream flow. Such processes can 

change the effectiveness of sediment delivery, including charcoal, from lake margins to 

the lake center. This results in the widely observed positive correlation between charcoal 

accumulation and sediment accumulation rates (i.e., constant charcoal concentration 

despite changing sediment accumulation rates) and a heteroscedastic charcoal record 

(e.g., Fig. 4). In contrast, if charcoal were delivered entirely through airfall, increased 

sediment accumulation rates would dilute charcoal concentrations, and the charcoal 

record would not be heteroscedastic. Therefore, we strongly warn against interpreting fire 

frequency changes in records with a several-fold change in sediment accumulation rate 

(along with no evidence that charcoal concentrations are diluted by changing 

sedimentation) and when inferred fire frequency closely tracks sediment accumulation 

rates. While there may be a non-causal relationship between sediment accumulation and 

fire frequency (e.g., via erosion or climate), this link must be explained with independent 

evidence if fire history is to be interpreted. A viable alternative in these cases is to only 

interpret high-resolution segments with constant sediment accumulation rates. 

 Finally, segments of records with low overall counts must be interpreted with 

caution. The use of the minimum-count test presented here can help guide interpretation 

in these cases, as can independent evidence of fire (e.g., pollen or macrofossils of fire-

dependent taxa). While charcoal records have successfully detected fires in non-forested 

ecosystems (e.g. savannah and tundra: Duffin et al. 2008, Higuera et al. 2008b), at some 

point along a fire-intensity spectrum, fires will not produce enough charcoal to create an 

identifiable peak in a record (Higuera et al. 2005, Duffin et al. 2008). This may be the 

case even with ample sample volume. Likewise, as local fire frequency decreases, so too 
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does the frequency of large charcoal peaks; this makes it more difficult to identify the 

signal of local fires from the noise of long-distance transport and within-lake 

redeposition.  

 Following Clark’s (1988a, 1988c) work in detecting fires from charcoal in laminated 

lake sediments, high-resolution charcoal records have proliferated in the absence of a 

thorough statistical framework for interpretation. This study is a first attempt to provide 

such a framework. We conclude from discussion above that applying a local threshold, in 

conjunction with the minimum-count test, is likely to provide the best interpretation of 

fire history from high-resolution macroscopic charcoal records. In most cases, the 

simplest detrending model (NR) is appropriate in this context, but there may be scenarios 

where the TR or NI variance-stabilization methods are justified. We emphasize the need 

for careful consideration when selecting, applying, and interpreting variance-stabilizing 

methods, and we encourage practitioners to evaluate the sensitivity of these choices on 

fire-history interpretations. Despite the challenges of inferring fire history from sediment 

charcoal records, significant progress has been made to improve the rigor of analysis and 

interpretations. In combination with the growing database of high-resolution charcoal 

records worldwide, charcoal records should continue to contribute uniquely to our 

understanding of fire regimes, the controls and ecological impacts of fire, and the role of 

fire in the Earth system. 
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Table 1. Published fire-history studies in North America based on macroscopic charcoal 
(sieved or in thin sections) where the goal of analysis was to detect peaks associated with 
local fires. Studies are grouped by threshold type and the detrending models used for 
analysis. “N” indicates the total number of studies in each category. 

 
Threshold 

type  
 

 
Detrending 

model Citation 
Location  
(State or 
Province) 

Particle 
Count 

or Area

Sediment 
volume per 

sample 
(cm3) 

Size 
class 

tallied

Background 
estimate 

Threshold 
determination1

 
Threshold 

value 2 

 
Global 

 
N = 37 

 
 

 
Non-

transform, 
Residuals 

(NR) 
 

N = 13 

Clark 
(1990) 

Minnesota, 
USA A Thin 

sections 

> 60 
μm 
long 

15-yr 
moving 
average 

Three lakes: TR 
(2-8) 

 
 

> 42 to 68

Millspaugh 
and 

Whitlock 
(1995) 

Wyoming, 
USA C 5 125 

μm 

 3-point, 
center 

weighted 
average 

Five lakes: TR 
(2-8) 

 
≥ 3.4, > 
4.6, ≥ 5 

Clark et al. 
(1996)  

New York, 
USA A Thin 

sections 

> 60 
μm 
long 

 
Inverse 
Fourier 

transform: 
30-yr 

window 

TR (11) 

 
> 60 

 

Clark and 
Royall 
(1996) 

New York, 
Wisconsin, 

Pennsylvania, 
Maine, USA

Ontario, 
Canada 

A Thin 
sections 

> 60 
μm 
long 

Inverse 
Fourier 

transform: 
10-yr 

window 

Seven lakes: H, 
TR 

 
 

> 40 

Carcaillet 
et al. 

(2001) 

Québec, 
Canada A 1 >150 

μm 

Inverse 
Fourier 

transform: 
100 yr 

window 

Three lakes: TR: 
not possible 

 
> 1sd of 

the average 
of 

background

Gavin et 
al. (2003) 

British 
Columbia, 

Canada 
C ca. 12 

150-
500 
μm 

 
26-yr locally 

weighted 
minimum 

value 

SC (12), TR (3); 
S1 

 
0.22  

Lynch et 
al. (2002) Alaska, USA A 1 >180 

μm 

 
100-yr 
locally 

weighted 
mean 

Three lakes: H 
(2); S1 

0.07: upper 
12% tail of 
residuals 

Lynch et 
al. (2004a) 

Alaska, USA; 
Manitoba, 
Northwest 
Territories, 

Ontario, 
Canada 

A 1 >180 
μm 

100-yr 
locally 

weighted 
mean 

Fiftee lakes: H(1-
2) for each lake; 

S1 

 
 

0.03-0.33; 
upper 8-
13% of 

residuals 
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Lynch et 
al. (2004b) Alaska, USA A 1 to 3 >180 

μm 

100-yr 
locally 

weighted 
mean 

Four lakes: S1 

 
0.018, 
0.085 

Gavin et 
al. (2006) 

British 
Columbia, 

Canada 
C 2 to 5 >125 

μm 

 
500-yr 
robust 

Lowess  

Two lakes: H, TR 
(2); S1 

 
GMM; 

0.08, 5.00 

Prichard et 
al. (2009) 

 

Washington, 
USA C ca. 10 

>150-
500 
μm 

750-yr 
locally 

weighted 
mean 

TR (2): S1 
 

 
GMM at 

99th 
percentile: 

not 
reported  

Ali et al. 
(2008) 

Québec, 
Canada A 1 > 160 

μm 

500-yr 
tricube 
locally-

weighted 
regression 

Lake, peat and 
soil charcoal 
compared; S1 

 
GMM at 

95th 
percentile: 

0.2  

Ali et al. 
(2009a) 

Québec, 
Canada A 1 > 160 

μm 

1000-yr 
tricube 
locally-

weighted 
regression 

Four lakes: S1 

 
 

GSM at 
95th 

percentile: 
0.015, 
0.025, 
0.040, 
0.007  
 

Transform, 
Residuals 

(TR) 
 

N = 1 

Hallett and 
Anderson 

(2010) 

California, 
USA C 2.5 > 125 

μm 

500-yr 
robust 

Lowess  

Two lakes: TR 
(1-2): S1 

 
 

GSM at 
95th 

percentile: 
0.03  

Non-
transform, 

Index 
(NI) 

 
N = 2 

Higuera et 
al. (2005) 

Washington, 
USA C 3 

150-
500, > 

500 
μm 

Series 
median  
(300-yr) 

12 Small 
hollows: TR (1-3 

per site) 

 
 

1.63-1.75

Tweiten et 
al. (2009) 

Wisconsin, 
USA C 1 > 150 

μm 
300-yr 
Lowess not possible 

 
1.3 

 
Transform,
Index (TI) 

 
Long et al.

(1998)  
N = 22 

 Oregon, USA C 2.5 >125 
μm 

600-yr 
locally-

weighted 
mean 
 

 
TR, H (4) 

 

 
1.12 

Hallett and 
Walker 
(2000) 

British 
Columbia, 

Canada 
C, A 1 >150 

μm 

500-yr 
locally 

weighted 
mean 
 

TR (2) 

 
1.0 

Millspaugh 
et al. 

Wyoming, 
USA C 5 >125 

μm 
750-yr 
locally- S2  

1.0 
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(2000) weighted 
mean 
 

Mohr et al. 
(2000) 

California, 
USA C 5 >125 

μm 

120-yr 
locally-

weighted 
mean 

Two lakes: TR 
(3) 

 
1.0 

Long and 
Whitlock 

(2002) 
Oregon, USA C 2.5 >125 

μm 

 
600-yr 
locally-

weighted 
mean 

H (2) 

 
1.25 

Brunelle 
and 

Anderson 
(2003) 

California, 
USA C 5 >125 

μm 

 
500-yr 
locally-

weighted 
mean 

H(1) 

 
1.1 

Brunelle et 
al. (2003, 

2005) 

Idaho and 
Montana, 

USA 
C 5 >125 

μm 

 
750 or 600-
yr locally-
weighted 

mean 

Four lakes: TR 
(3-5) 

 

 
1.15-1.30

Hallett et 
al. (2003a) 

British 
Columbia, 

Canada 
C 10 >125 

μm 

 
400-yr 
locally-

weighted 
mean 

Two lakes: SC 
(10-18) 

 
 

1.0 

Hallett et 
al. (2003b) 

British 
Columbia, 

Canada 
C 10 >125 

μm 

 
50-yr 

locally-
weighted 

mean 

TR (4) 

 
 
1.1 

Daniels et 
al. (2005) 

California, 
USA C ca. 8 >125 

μm 

 
370-yr 
locally-

weighted 
mean 

TR (3) 

 
 
1.0 

Briles et 
al. (2005) Oregon, USA C 2 to 5 >125 

μm 

 
500-yr 
locally-

weighted 
mean 
 

TR (3) 

 
 

1.1 

Toney and 
Anderson 

(2006) 

Colorado, 
USA C 5 >125 

μm 

300-yr 
locally-

weighted 
mean 

H (1) 

 
 

1.0 

Anderson 
et al. 

(2006) 
Alaska, USA C 5 >125 

μm 

 
300-yr 
locally-

weighted 
mean 

H (3-5);  
SC (4) 

 
 

1.2 

Power et 
al. (2006) 

Montana, 
USA C 0.3 to 1? >125 

μm 

 
150-yr 
locally-

H (1) 
 

 
1.05 



 46 

weighted 
mean 

Marlon et 
al. (2006) 

California, 
Oregon, 

Montana, 
Wyoming, 

Idaho, USA

C 1 to 5 >125 
μm 

500-yr 
locally-

weighted 
mean 

15 lakes: H (1-5); 
TR (1-5); varies 

by site 

 
 

1.0-1.3 

Long et al. 
(2007) Oregon, USA C 3 to 5 >125 

μm 

600-yr 
locally 

weighted 
mean 

H (2-3); S1 

 
 

1.2 

Anderson 
et al. 

(2008) 

Colorado, 
New Mexico, 

USA 
C 1 to 5 >125 

μm 

 
1000-yr 
locally-

weighted 
mean 

Three lakes and 
three bogs:  

H (1-3) 

 
1.01 

Allen et al. 
(2008) 

New Mexico, 
USA C 1 to 5 >125 

μm 

 
300-yr 
locally-

weighted 
mean 

Two bogs: TR 
(1-4), H (fire-free 

interval) 

 
 

1.01 

Minckley 
et al. 

(2007) 

Oregon and 
California, 

USA 
C 4 to 5 >125 

μm 

 
900-yr 
locally-

weighted 
mean 

Three lakes:  
H (lowest 

threshold with no 
fires in last 100 

yr) 

 
 

1.00, 1.05, 
1.15 

Whitlock 
et al. 

(2008) 

Wyoming, 
USA C 1 >125 

μm 

 
150-yr 
locally-

weighted 
mean 

TR (2) 

 
 
1.1 

Beaty and 
Taylor 
(2009) 

California, 
USA C 3 >125 

μm 

240-yr 
locally-

weighted 
mean 

TR (3) 

 
1.0 

 

 
Local 

 
N = 6 

 
Non-

transform, 
Residuals 

(NR) 
 

N = 6 

Higuera et 
al. (2008a) Alaska, USA C 3 to 5 >150 

μm 

 
smoothed 

500-yr 
median or 

mode 
 

Two lakes (pre-
modern): S2 

 
GMM at 

99th 
percentile 

Walsh et 
al. (2008)  

Washington, 
USA C 1 >125 

μm 

500-yr 
robust 

Lowess 
TR (3); S2 

GMM at 
95th 

percentile 

Briles et 
al. (2008) 

California, 
USA C 2 >125μ

m 

700-yr 
locally-

weighted 
regression

 

Two lakes; S2 
 

 
GMM at 

95th 
percentile 

Marlon et 
al. (2009) 

North 
America C 

Varies with 
several 
records 

used 

>125 
μm 

500, 600, 
800-yr 
robust 

Lowess 

Thirty-five lakes:
S2 

 
GMM at 

95th 
percentile 

Higuera et 
al. (2009) Alaska, USA C 3 to 5 >150 

μm 
 

smoothed 
Four lakes: H(1);

S2 
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500-yr 
median or 

mode 
 

GMM at 
99th 

percentile 

Huerta et 
al. (2009) 

Wyoming, 
USA C 5 and 50 >125 

μm 

500-yr 
robust 

Lowess  
H(1); S2 

 
GMM at 

95th 
percentile 

1 Methods of threshold determination as follows: 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

TR: detected peaks compared to fires reconstructed from tree-rings (fire scars and/or stand ages) 
SC: detect peaks compared to radiocarbon dates from local soil charcoal 
H: detected peaks compared to historical fire record 
S1: sensitivity analysis based on coefficient quantifying separation of peaks from background 
S2: sensitivity analysis based on qualitative assessment of results using alternative threshold criteria 
For TR, SC, and H methods, the number of independent fire records is shown in parentheses. 
 
2 Threshold values: Units for NR and TR models are pieces cm-2 yr-1 for counts or mm2 cm-2 yr-1 for area. 
Thresholds for NI and TI models are unitless index values. 
GMM: Gaussian mixture model. For local thresholds, the percentile of the GMM defines a different 
threshold value for each sample, and thus threshold values are not reported.  
GSM: Gaussian single model, with mean of zero.   
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3 

4 

Table 2. Decisions typically required to develop a high-resolution lake-sediment 

macroscopic charcoal record, summarized from Whitlock and Larsen (2001). The aim of 

the current paper is to discuss data manipulations after completing these steps of 

developing a charcoal record. 

Step Decisions 
Potential issues and 
sources of error  

1. Sediment collection Coring location Gaps in record 

2. Sediment subsampling Sediment volume per 
sample 

Sampling interval 

Volume overestimate (core 
shrinkage). 

Sample volume too small, 
resulting in low charcoal 
counts. 
 
Interval too long to 
distinguish consecutive fire 
events. 

3. Sediment sieving Sieve sizes Incomplete sieving 

Sample spillage 

4. Charcoal quantification Count or area Misidentification 

Breakage of charcoal results 
in inflated counts. 

5. Estimate charcoal 
accumulation rate (CHAR) 

Age-depth model fitting to 
calculate sediment 
accumulation rates 

Poor chronological control 

6. Interpolate CHAR to a 
constant interval 

Interval size (typical value 
is the median sample 
deposition time) 

Loss of resolution in 
portions of the record 
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1 Table 3. Selected abbreviations used in the text and corresponding definitions. 

Abbreviation Definition 

Components of a 
Charcoal Record  

C Resampled charcoal in a charcoal series, expressed as 
pieces cm-2 yr-1 or cm2 cm-2 yr-1 

log(C+1) Natural logarithm of resampled charcoal, after one is 
added to guard against negative values 

Cback 
Background charcoal, defined as a function of resampled 

charcoal 

Cback, where Cback = 
f(log[C+1]) 

Background charcoal, defined as a function of log-
transformed, resmpled charcoal 

Cpeak 
Detrended, or “peak” series of a charcoal record, after 

trends in background charcoal are removed 

Detrending Models  

NR No-transform, Residual: 
Cpeak = C – Cback 

NI No-transform, Index: 
Cpeak = C / Cback 

TR Transform, Residual: 
Cpeak = log(C+1) – Cback, where Cback = f(log[C+1]) 

TI Transform, Index: 
Cpeak = log(C+1) / Cback, where Cback = f(log[C+1]) 

 2 
3 
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8 

9 

10 

11 

12 

Table 4. Stationarity of variance and skewness of C and Cpeak series for different decomposition 

models. The modified Levene’s test statistic, W50, and the probability of the null hypothesis of 

equal variances, p, are based on comparisons between values from 10,000-6000 to 4000-0 yr BP 

in simulated records, and equally split halves since 8000, 5000, and 10,000 yr BP for Little, 

Rockslide, and Ruppert lakes, respectively. Bold (italic) values identify stationary series, those 

that fail to reject the null hypothesis at α = 0.10 (0.05), where a higher α is more conservative. 

The skewness coefficient is a measure of the asymmetry of the entire peak series of each 

respective model, where positive values indicate greater spread above the mean value and a zero 

value indicates a symmetric distribution. The time series for each model is shown in Fig. 2 and 4 

for the simulated and empirical records, respectively. Values for simulated records represent the 

median value from 500 records constructed under each scenario. 

 
Scenario or 

Site 
W50 test statistic for equality of variances 

(p-value)  
Skewness coefficient  

(2.5th-97.5th percentile) 
[within-row rank] 

 C NR TR NI TI  NR TR NI TI 

Scenario 1 
(variance 
constant) 

 

0.45 
(0.502) 

0.44 
(0.508) 

46.72 
(<0.001) 

25.62 
(<0.001) 

98.54 
(<0.001)  

 
2.59 

(1.98-
4.17) 
[1] 

 

 
0.96 

(0.68-
1.29) 
[2] 

 

 
3.47 

(2.40-
6.14) 
[1] 

 

 
1.22 

(0.79-
1.74) 
[2] 

 

Scenario 2 
(variance 

proportional) 

21.87 
(<0.001) 

20.90 
(<0.001) 

7.12 
(0.008) 

10.81 
(0.001) 

57.92 
(<0.001)  

2.97 
(2.12-
5.05) 
[1] 

1.20 
(0.89-
1.52) 
[2] 

3.03 
(2.17-
4.98) 
[1] 

1.55 
(1.01-
2.10) 
[2] 

           

Little Lake 
153.14 

(<0.001) 
37.72 

(<0.001) 
3.40 

(0.066) 
0.01 

(0.942) 
68.79 

(<0.001)  17.73 
[1] 

0.28 
[3] 

4.17 
[2] 

-0.56 
[4] 

Rockslide 
Lake 

15.20 
(<0.001) 

5.71 
(0.018) 

0.49 
(0.483) 

6.20 
(0.013) 

14.70 
(<0.001)  3.16 

[3] 
1.68 
[4] 

5.28 
[1] 

3.70  
[2] 

Ruppert Lake 
84.62 

(<0.001) 
59.51 

(<0.001) 
66.52 

(<0.001) 
5.62 

(0.018) 
9.11 

(0.003)  4.10 
[3] 

3.14 
[4] 

6.79 
[1] 

6.37 
[2] 

 13 
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Figure Legends 

Fig. 1. The set of decisions required for analyzing a charcoal time series with the goal of peak 

detection for interpretation of fire episodes. These steps are implemented in the CharAnalysis 

software (http://Charanalysis.googlepages.com; last accessed Oct 20, 2009). 

 

Fig. 2. Simulated charcoal records reflecting alternative assumptions regarding the stability of 

the variance through time. (a) Representative records from each scenario. Scenario 1 has 

constant variance peak heights superimposed on a changing mean. Scenario 2 is a 

heteroscedastic series in which the peak variance changes in proportion to Cback. The thick black 

line in all figures is a 500-year loess smooth used to define the “background” levels (Cback). (b) 

Series expressed on a log scale. (c-f) Detrended series based on four alternative methods. 

 

Fig. 3. Sensitivity of peak identification to decomposition models and threshold type. The 

sensitivity index, s, is the ratio of detected peaks from period 1 to period 2 in the two simulated 

charcoal scenarios in Fig 2. The error bars indicate the 95% confidence interval from 500 

realizations of the simulated records. 

 

Fig 4. Empirical charcoal records detrended using the four decomposition models. Records are 

from western Oregon (Little Lake; Long et al. 1998), southeast British Columbia (Rockslide 

Lake, Gavin et al. 2006), and the Alaskan Brooks Range (Ruppert Lake; Higuera et al. 2009). 

 

Fig 5. The Gaussian mixture model applied to the Cpeak series from Rockslide Lake. Each panel 

corresponds to a single detrending model. The Gaussian model representing the noise 
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distribution is shown by a thick gray line. The vertical line represents a typical threshold level for 

peak identification, located at the 99th percentile of the lower distribution.  

 

Fig 6. Inferred fire history from Little, Rockslide, and Ruppert lakes using alternative 

decomposition methods. Each row corresponds to a different detrending model, as in Fig. 4, and 

each panel includes peaks detected based on a global and local threshold. The location of peaks 

exceeding the threshold value(s) are identified with “+” and “.” symbols, where the latter 

identifies peaks that failed to pass the minimum-count test. The proportion of total peaks failing 

to pass the minimum-count test is displayed on the right hand side of each panel. Smoothed lines 

represent the 1000-yr average fire frequency for a given decomposition method, and all panels 

are scaled from 0 to 15 (fires per 1000 yr) on the y-axis.  

 

Fig 7. Minimum increase in charcoal counts required to confidently separate pre-peak from peak 

samples. The required increase is displayed as a total number and a proportion, and it depends 

upon (a) the confidence desired (α = 0.01, 99% or α = 0.05, 95% confidence), and (b) the number 

of pieces in the smaller, pre-peak sample. The curves are developed from the test for assessing 

whether two samples are from the same Poisson distribution (Detre and White 1970). Lines for 

two significance levels are shown and presented both as absolute counts and percentage increase 

of the lower count.  
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